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Pockels's linear laws of photoelasticity which are valid for infinitesimal stresses and strains have been 
extended to the range of large stresses and finite strains. The various nonvanishing second-order photo- 
elastic coefficients for all the crystal classes and the isotropic system have been evaluated. Finally the 
relevant equations involving the various combinations of the second-order photoelastic coefficients 
that occur in the conventional photoelastic measurements, have been derived for the isotropic system. 

Introduction 

Recent measurements of the variation of the refractive 
index with hydrostatic pressure up to 7 kbar have re- 
vealed departures from the linear stress-optic law of 
Pockels (1889; see also Szivessy, 1929) in several ma- 
terials (Vedam & Schmidt, 1965, 1966a; Vedam, 
Schmidt & Roy, 1966). However, the variation of the 
refractive index was found to be quite linear with 
volume strain, if the strain is computed using the non- 
linear theory of elasticity. But in the case of zinc blende 
(Vedam, Schmidt & Srinivasan, 1966; Vedam & 
Schmidt, 1966b), it is found that the change in refrac- 
tive index is nonlinear even as a function of the volume 
strain. This indicates that the linear stress-optic and 
strain-optic relations of Pockels have to be modified 
for high pressures and finite strain, as shown below. 

Phenomenologieal equations of non-linear photoelastieity 

The equation for the index ellipsoid in a general Car- 
tesian system of coordinates is 

aijx~x~= 1 ( i , j=  1, 2, 3).  (1) 

Here the usual convention of summation over re- 
peated indices is followed, a~. are the components of 
dielectric impermeability tensor. Extending the Pockels 
theory of photoelasticity, we may write 

Aa~ i = q~,~t tgt + qi1,~lmn tkl tmn (2) 
and 

Aa~i =Pi~,~t~l~t + Pi~,k, lmnriklrlmn • (3) 

All the items in these equations are referred to the co- 
ordinate system in the undeformed state. Here the tez 
represent the components of the thermodynamic ten- 
sions (Thurston & Brugger, 1964) and r/et the com- 
ponents of the Lagrangian strain tensor. These ther- 
modynamic tensions tpq are related to the applied 
stresses z~. by 

gx~ 5x~ 
to '= eo gay fiaq tpq (4) 
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in the notation of Thurston & Brugger. The sign con- 
vention adopted by Nye (1960a) is used here. qij,~t and 
pij,kt are the usual first order piezo-optic and elasto- 
optic coefficients, qiy,lclmn and Pij,klran are the second 
order piezo-optic and elasto-optic coefficients. These 
latter coefficients are components of a sixth rank ten- 
sor. They are symmetric in the interchange k l , ~ m n  but 
not with respect to ij'~-kl or i j ~ m n .  This is indicated 
by a comma after ij. 

Using the following relation between t~j and r/la 
(Thurston & Brugger, 1964): 

tij = C~j~t~Bct + C~Hclmnt]kltImn 

we can relate qii,~tmn and pijJctmn as follows: 

(5) 

PiLklmn = qiLrsCrslclmn + qiLrspqCrskzCpqmn . (6) 

Here C~jkt are the second order elastic constants and 
C~mmn are Brugger's (1964) third order elastic con- 
stants. 

If the deformation produced by the stress T~j does 
not involve any rotation, then zi~ can be written in 
terms of r/it, according to Barsch (1963): 

zij = Cimrl~z + Dij,tcZmnrlk~rlmn , (7) 
where 

1 
Dly,lamn = ~ [Cinezgym + Cinlclgim + Cimklt~jn + Cjmklt~in 

+ Cilmngjk + Cjlmn(~ik + Cikmnt~j1 + Cjkmn(~il 

- 2Cijlagmn - 2C~jmn~z + 2 C t m m n ] .  (8) 

In such a case we can write the relations between 
da~j, and r~3" analogous to equation (2), as 

Aaij = qij,~zr~t + q'lJ,kZmnZk.Zrmn (9) 
and 

PiJ,lclmn = qlLrsDrs,klmn + q'iLrspqCrsklCpqran . (10) 

From the symmetry of the qij,lctmn it can be seen 
that the total number of independent second order 
piezo-optic constants for a crystal of triclinic symmetry 
is 126. As the crystal symmetry increases this number 
decreases. Adopting the direct inspection method and 
the analytical methods (Nye, 1960b) wherever appro- 
priate, all the independent non-vanishing second order 
piezo-optic coefficients have been derived for all the 
32 crystal classes and the isotropic system. These co- 
efficients are listed in Table 1. For the triclinic crystal 
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classes 1 and 1, all the constants listed in column 1 are 
present. The alphabetical symbols in Table 1 are ab- 
breviations for the expressions given in Table 2. 

The usual convention of replacing the index-pairs 
11 ,22 . . .12  by 1 , 2 , . . . 6  is adopted in the Tables. To 
avoid the excessive use of suffixes, the letter q is omitted 
from Tables 1 and 2; an entry 111 for example, stands 
for q ~  and an entry ½(3:116+ 126) for ½(3ql16+q126). 
These tables are completely valid for the components 
Pu,klmn and q'i#,klmn as well. 

The last row in Table 1 gives the total number of 
independent constants for each crystal class. These 
'total' numbers are in agreement with those derived by 
group-theoretical methods by Bhagavantam & Su- 
ryanarayana (1949). 

Applications 

In the following we assume that the deformations pro- 
duced by the stresses are 'pure' and that no rotations 

rysta I 

s m 2rm 3 

2/m 

c - o n s t ~  

iii iii !ll iii 
112 112 112 112 

ll3 113 113 113 
114 "~ q 114 
115 115 0 115 
116 0 0 116 
122 122 122 a 
]_23 123 123 123 
124 0 0 124 
125 125 0 125 
126 o o 126 
133 133 133 133 
134 0 0 134 
135 135 0 135 
136 0 0 136 
144 144 144 144 
145 0 0 145 
146 146 0 b 
155 155 15~ 155 
156 0 0 c 
166 166 166 d 
211 211 211 211 
212 212 212 a' 
213 213 213 123 
214 0 0 214 
215 215 0 215 
216 0 0 - 116 
222 222 222 222 
223 223 223 113 
224 0 0 e 
225 225 o e' 
226 0 0 - 126 
233 233 233 133 
234 o 0 -134 
235 235 o -135 
236 0 0 -136 
244 244 244 155 
245 0 0 -145 
246 246 0 f' 
255 255 255 144 
256 0 0 .  f 
266 266 266 d' 
311 311 311 311 
312 312 312 312 

313 315 313 313 
31h 0 0 314 
3]-5 315 o 315 

are present. This appears to be a reasonable assumption 
in the case of pure tensions or compressions which are 
considered below. In the case of hydrostatic pressure 
however, the following relations are exact since there 
are no rotations here. 

(A) Isotropic sys tem 
For an isotropic system there are four independent 

second order coefficients and they can be determined 
as follows: 

Case (i): uniaxial stress. Let the stress be applied 
along the X axis. Then %1 = P and all the other stress 
components are zero. Then equation (2) becomes 

z]al = - -  2z~nl/n 3 = q n P  + q'nl P2 (11) 
and 

Aa2 = - -  2An2/n 3 = qlzP q- q'122P 2 (1 2) 

Hence by studying the nonlinear variation of An with 
stress for light polarized parallel and perpendicular to 

Table 1. Second order photoelast ic  coefficients 
2 222 3 3m 6 5m2 4 4mm 23 ~3m 

32 5 6mm H ~2m 
5 432 Zso- 

~ 6 622 4 422 m tropic 

4 3 2 m ~ 622 ~ 422 ~ 

Nm~ql wm~n 

iii ] ii iii III Iii Iii Iii IIi 
112 112 112 112 112 112 112 112 
ll3 ll3 ll3 ll3 ll3 ll3 ll2 ll2 
114 o o o 0 o o o 
o o 0 o o o o o 
o ll6 0 116 0 0 0 0 
a a s 122 122 122 122 122 

123 123 123 123 123 123 123 123 
124 o 0 o o 0 o o 
o o 0 o o o o o 
0 126 0 126 0 0 0 0 
133 133 133 133 133 133 122 122 
134 o o o o o o o 
o o o o o o o o 
O 136 0 136 0 0 0 0 
144 144 144 144 144 144 144 x 
0 145 0 145 0 0 0 0 
0 0 0 0 0 0 0 0 

155 155 155 155 155 155 155 Y 
c 0 0 0 0 0 0 0 
d d d 166 166 166 155 Y 

211 211 211 122 122 133 122 122 
a' a' a i 112 112 113 112 112 

123 123 123 123 123 123 123 123 
214 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 - ! 16 0 - 126 0 0 0 0 

222 222 222 iii iii iii iii iii 
113 113 I13 I13 I13 112 i12 112 
e 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 - 126 0 - 116 0 0 0 0 
133 133 133 !33 133 122 122 122 

-134 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
o - 136 o - 136 o o o o 
155 155 155 155 155 166 155 y 
0 -145 -,. 0 -145 0 0 0 0 
0 0 0 0 0 0 0 0 

141' 144 144 144 144 144 144 x 
f 0 0 0 0 0 0 0 
d' d* d' 166 166 155 155 Y 

311 311 311 311 311 122 122 122 
312 312 312 312 312 123 123 123 
313 313 313 313 313 112 i12 i12 
314 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

A.C 2 2 - 2  
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316 
322 
323 
324 
325 
326 
333 
334 
335 
336 
344 
345 
346 
355 
356 
366 
411 
412 
413 
414 
415 
416 
422 
423 
424 
425 
426 
433 
434 
435 
436 
444 
445 
446 
455 
456 
466 
511 
512 
513 
514 
515 
516 
522 
523 
524 
525 
526 
533 
534 
535 
536 
544 
545 
546 
555 
556 
566 
611 
612 
613 
614 

615 
616 
622 
623 
624 
625 
626 
633 
634 
635 
636 
644 
645 
646 
655 
656 
666 

Table 1 (cont.) 
0 0 o 0 0 0 316 0 0 0 0 

322 322 311 311 311 311 311 311 133 122 122 
323 323 313 313 313 313 313 313 113 ll2 112 
0 0 -314 -314 0 0 0 0 0 0 0 

325 0 -315 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 -316 0 0 0 0 

333 333 333 333 333 333 333 333 lll lll lll 
0 0 0 0 0 0 0 0 0 0 0 

335 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 

344 344 344 344 344 344 344 344 155 155 y 
0 0 0 0 0 0 0 0 0 0 0 

346 0 -315 0 0 0 0 0 0 0 0 
355 355 344 344 344 344 344 344 166 155 y 
o o 314 314 o o o o o o o 

366 366 g g g g 366 366 144 144 x 
o o 411 411 0 0 0 0 0 0 0 
0 0 412 412 0 0 0 0 0 0 0 
o o 413 413 o o o o o o o 

414 414 414 414 414 414 414 414 414 414 x' 
0 0 415 0 415 0 415 0 0 0 0 

416 o h' 0 0 0 0 0 0 0 0 
0 0 i i 0 0 0 O 0 0 0 
0 0 -413 -413 0 0 0 0 0 0 0 

424 424 424 424 424 424 424 424 424 424 
o o 425 o 425 o 425 o o o o 

426 0 # 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 

434 434 434 434 434 434 434 434 434 424 
o 0 435 o 435 o 435 0 o o o 

436 0 436 0 o o o o 0 o o 
0 0 444 444 0 0 0 0 0 0 0 

445 0 -555 0 0 0 0 0 0 0 o 
o o k 0 k 0 446 o o o o 
0 0 -444 -444 0 0 0 0 0 0 0 

456 456 ~ ~ ~ ~, 456 456 456 456 w 
0 0 412 412 0 0 0 0 0 0 0 

511 0 511 0 0 0 0 0 0 0 0 
512 o 512 o o o o o o o o 
513 0 -436 0 0 0 0 0 0 0 0 
0 0 -425 o -425 o -425 o o o o 

515 515 424 424 424 424 424 424 434 424 ~' 
0 0 h h 0 0 0 0 0 0 0 

522 o i' o o o o o o o o 
523 o 436 o o 0 o o o o o 
0 0 -415 0 -415 0 -415 0 0 0 0 
525 525 414 414 414 414 414 414 414 414 x" 
0 0 j j 0 0 0 o o 0 o 

533 0 0 0 0 0 0 0 0 0 0 
o o -435 o -435 o -435 o o 0 o 

535 535 434 434 434 434 434 434 424 424 
0 o 413 413 o o o 0 o 0 0 

544 0 -555 0 0 0 0 0 0 0 0 
0 0 -444 -444 0 0 0 0 0 0 0 

546 546 ~ g ~ • 456 456 456 456 w 
555 o 555 o o o o o o o o 

0 0 - k  0 - k  0 -446 0 0 0 0 
566 0 512 0 0 O 0 0 O O O 
0 0 m 0 m 0 611 0 0 0 0 
0 0 n 0 n 0 0 0 0 0 0 
0 0 - 136 0 - 136 0 613 0 0 0 0 

614 o b ~ 0 0 0 0 0 0 0 0 

0 0 e'  e I O 0 0 0 0 0 0 
616 616 q q q q 616 616 424 424 
0 0 m' 0 n{ 0 -611 0 0 0 o 
O 0 136 0 136 0 -613 0 0 0 0 

624 0 r' 0 0 0 0 0 0 0 0 
0 0 r r 0 0 0 0 0 0 0 

626 626 s s s s 616 6i6 434 424 
0 0 0 0 0 0 0 0 0 0 0 

634 0 -135 0 0 0 0 0 0 0 0 
o o 134 134 o o o o o o o 

636 636 t t t t 636 636 414 414 x' 
0 0 145 0 145 0 644 0 0 0 0 

645 645 u u u u 645 645 456 456 w 
0 0 0 0 0 0 0 0 0 v 

o o - 5 o -145 o -644 o o o o 
656 0 v' 0 0 0 0 0 0 0 0 
0 0 n 0 n 0 0 0 0 0 0 

No.of 126 68 39 42 26 24 17 34 22 13 9 4 
inde- 
pendent 
consts. 
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the direction of stress, one can evaluate q' l l l  and q'122 
from these two equations. 

Case (ii): biaxial stress. Let a stress PI be applied 
along the X axis and a stress P2 along the Y axis. The 
relevant equations for the variation of refractive index 
are 

Aax = - 2Anl/n 3 = 
t 2 qllP1+q12Pz+q 111PI +q'lz2P22+2q'llzP1P2 (13) 

A a 2  = - 2 A n z / n  3 = 

q12Pl+qllPz+q'x22P2+q'xllp2+ 2q'llEP1P2 (14) 
Aa3 = - 2Ana/n 3 = 

q12(e1+e2)+q'122(e~+P~)+2q'~23P~e2. (15) 

Thus by studying the nonlinear variation of refractive 
index with stress, for light polarized along Z and X 
or Y axes, the second order coefficients q123 and qI~2 
can be determined. 

Case (iii): hydrostatic pressure. In this case zxl= 
z22 = 2"33 = - - P  and all the other stress components are 
zero. Then the change in refractive index is given by 

A a l  = A a 2  = A a 3  = - 2 A n / n  3 = 

- (qll + 2q12)P + (q'axl + 4q'112 + 2q'a22 + 2q'123)P 2 • (16) 

Thus measurements with hydrostatic pressure provide 
an additional relation among the second order co- 
efficients which can be used to check the results of the 
previous two cases. 

(B) Cubic crystals o f  Tq3m, 432 and 4/m32/m classes 

Following a similar reasoning to that used in the 
isotropic case we can easily work out the equations for 
the three cases mentioned above. Further since the di- 
rections of stress and directions of observation could 
be along the [100], [110], [111] and [2.11] directions we 
can get a more than sufficient number of equations to 
determine the nine second order photoelastic coeffi- 
cients. 

Finally a few remarks about the feasibility of such 
experiments will be in order. With present day tech- 
niques, hydrostatic pressure studies can be carried out 
to about 15 kbar without any complication and non- 
linear variations of refractive index can be measured. 
As regards uniaxial pressure measurements extensive 
investigations of Stokes & Li (1963) on magnesium 
oxide reveal that with careful crystal preparation tech- 
niques like proper annealing, chemical polishing and 
careful handling, one can apply tensile stresses greater 
than 11 kbar without plastic deformation. It may be 
mentioned that this limit of 11 kbar was set by the 
failure of the grips rather than the onset of plastic de- 
formation. Employing similar techniques with other 
crystals one could hopefully extend the upper limit of 
uniaxial stress measurements. 

As regards the biaxial stress measurements, the 
authors are not aware of any previous photoelastic 
measurements on solids employing biaxial stresses. 
However, the authors do not foresee any major diffi- 
culties in carrying out such measurements if one adopts 
a biaxial system somewhat similar to that employed 
by Buessem, Cross & Goswami (1966) for dielectric 
measurements. Of course the usual precautions with 
uniaxial stress measurements mentioned above have to 
be taken with the biaxial stress measurements. 

The authors would like to express their sincere 
thanks to Prof. Rustum Roy, Director of the Materials 
Research Laboratory, for his kind interest. 
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Symbol 
a 
b 
c 
d 
e 
f 
g 
h 
i 
] 
k 
l 
m 
ii 
q 

r 
s 
t 
II 

V 
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X 

Y 
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It is well known that in the calculation of wave functions very good results can be obtained for the molec- 
ular or atomic energy, namely 99 % of the experimental value or better. Some other physical properties 
do not agree as well with experimental data; these include dissociation energies and ionization poten- 
tials. In the case of the physical properties dependent for their calculation upon electron charge densities 
a better agreement is obtained, perhaps because the first order correction to the Hartree-Fock charge 
distribution is zero. The good agreement obtained for total energies may come from compensated errors 
in various parts of their distributions, and cannot give sufficient information concerning the other 
properties. It is now reasonable to believe that very accurate calculations and experiments on scattering 
phenomena may be used together to study electronic distribution in various scatterers. It is the aim of 
this paper to show that scattered intensities and spectral studies of the modified radiation may give 
complementary information. 

Several calculations made for light atoms and molecules are discussed and compared with experimen- 
tal data when possible. Some results obtained are discussed in relation to chemical bonding for which 
accurate atomic and molecular electronic densities are required. 

Introduction 

During recent years a large number of calculations 
have been done on scattering factors and intensities 
and on the shape of the Compton profiles. Generally 
made by different authors, these calculations have 
never been definitely compared. This comparison now 
seems very useful with the advent of high resolution 
spectrometers and more accurate wave functions. It is 
only recently that Kilby (1965) has shown that the 
Compton profile, to a first approximation, can be de- 
duced from the Waller & Hartree (1929) theory; when 
the results obtained with the help of this theory are 
compared with experimental data, it is shown that the 
method is very convenient for studying the effects of 
scattering as well as the Compton profiles. Although 
these methods are first approximations to more rigor- 
ous theories, they give good results as far as incident 
beams of high energy are concerned. 

Important  contributions to this work have recently 
been published particularly by Bonham & lijima (1963), 
Bonham (1965a, b,c,d,e); Tavard, Roux & Cornille 
(1962, 1963), Tavard, Roux & Rouault (1964), Tavard 
& Roux (1965); Tavard (1966); Kilby (1963, 1965), 
and Bartell & Gavin (1964). Important sets of referen- 
ces can be found in these articles. 

Waller and Hartree's theory 

It is easy to show with the use of Waller & Hartree's 
theory that scattered intensities, in the case of incident 
X-ray of high energy, can be written as a sum of terms 
in the form: 

lom=Zct V---v3lDoml2 (1) 

where v and v' are the frequencies of the incident and 
scattered radiations, and 


